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Abstract

Draw-bend springback shows a sudden decline as the applied sheet tension approaches the force to yield the strip.
This phenomenon coincides with the appearance of persistent anticlastic curvature, which develops during the forming
operation and is maintained during unloading under certain test conditions. In order to understand the mechanics of
persistent anticlastic curvature and its dependence on forming conditions, aluminum sheet strips of widths ranging from
12 to 50mm were draw-bend tested with various sheet tensions and tool radii. Finite element simulations were also car-
ried out, and the simulated and measured springback angle and anticlastic curvature were compared. Analytical meth-
ods based on large deformation bending theory for elastic plates were employed to understand the occurrence and
persistence of the anticlastic curvature. The results showed that the final shape of a specimen cross-section is determined
by a dimensionless parameter, which is a function of sheet width, thickness and radius of the primary curvature in the
curled region of an unloaded sample. When the normalized sheet tension approaches 1, this parameter rapidly
decreases, and significant anticlastic deflection is retained after unloading. The retained anticlastic curvature greatly
increases the moment of inertia for bending, and thus reduces springback angle.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Aluminum; Anticlastic; Bending; Plate; Springback

1. Introduction

When a long, flat rectangular sheet of uniform thickness is bent about an axis parallel to one of its edges,
say in the x-direction, a transverse curvature is developed in the direction parallel to the bending axis
(Lamb, 1891). For elastic deformation, this happens by the differential lateral contraction caused by
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Fig. 1. Distorted plate surface after bending: (a) anticlastic and (b) synclastic.

Poisson’s effect. Consequently, the initially flat surface becomes an anticlastic surface, with two orthogonal
curvatures of opposite sign, Fig. 1(a). If the centers of these two curvatures appear on the same side of the
surface, the surface is synclastic, Fig. 1(b). For narrow, initially flat sheets, the ratio between the longitu-
dinal (i.e., primary, x-direction) and the transverse (i.e., secondary, y-direction) curvatures is given by the
Poisson’s ratio v, i.e., R, = vR, (Yu and Zhang, 1996).

The shape of the cross-section of a bent beam or plate depends on a dimensionless parameter, f§ = ijv
with W, t and R, being the sheet width, thickness and radius of the primary bending curvature, respectively
(Searle, 1908). The anticlastic surface has a constant curvature of — o when f is less than unity (Ashwell,
1950). In this case, the sheet behaves like a plane-stress beam. However, if f§ is larger than 20, the anticlastic
deflection is mainly confined to the sheet edges, while the sheet central area stays relatively flat (Ashwell and
Greenwood, 1950a,b; Bellow et al., 1965). Consequently, the deformation state can be characterized as
more plate-like, with plane-strain the limiting approximation. The deformation modes may be interpreted
in terms of “body force” which tends to suppress the formation of a large circular cross-section (Horrocks
and Johnson, 1967). When bending wide sheets to a small radius, the constrained anticlastic curvature
causes a biaxial stress state on the tension side of the sheet (Gerard, 1946).

The principles of simple elastic plate bending have been extended to bodies of varying thickness (Fung
and Wittrick, 1954; Conway and Nickola, 1965; Conway and Farnham, 1965; Pao and Conway, 1966), to
anisotropic single crystal silicon (Kaldor and Noyan, 2002a,b), and to specimens plastically deformed in
four-point bending tests (Horrocks and Johnson, 1967). In the last case, pertinent to the current work, it
was concluded that plasticity affected the magnitude of the anticlastic curvature, but had little effect on
springback.

There is little literature on anticlastic deflection for more complicated forming processes. Anticlastic
displacements up to 1.5 times the sheet thickness have been measured after draw-bending and unloading
(Carden et al., 2002; Li et al., 2002), in marked contrast to simple bending results where theory predicts
a maximum deflection of about 10% of the sheet thickness. For small sheet tensions, the anticlastic curva-
ture developed during forming nearly disappeared during unloading, thus having little effect on final speci-
men shape (consistent with observations for springback in simple bending). However, as sheet tension was
increased to the yield stress of the material, the anticlastic distortion persisted after unloading. This persist-
ent anticlastic distortion increased the moment of inertia of the specimen greatly, and thus reduced spring-
back commensurately (Carden et al., 2002).

This investigation focuses on the role of anticlastic curvature in springback following draw-bend defor-
mation. The mechanics of persistent anticlastic curvature is sought, especially its dependence on forming
parameters and specimen geometry. In order to proceed, the classic theory of bending elastic plate is
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reviewed. Draw-bend test results are then presented, and they are considered with the aid of the theory and
finite element simulations. Discussions and conclusions are then drawn.

2. Draw-bend experiment

The draw-bend test can closely mimic industrial forming processes, where sequential bending and
unbending takes place under superimposed tension as sheet material is drawn over a rigid tool surface
(Carden et al., 2002). Unlike other laboratory (and industrial) forming tests, where stretching is usually
provided through various locking mechanisms (draw-bead or blank holder), sheet tension can be directly
and precisely controlled in the draw-bend test, using a secondary hydraulic cylinder which is pro-
grammed to provide constant stretching force during the test (Vallance and Matlock, 1992). In this study,
6022-T4 aluminum strips were tested using a special draw-bend machine at Colorado School of Mines.
Details of this equipment and procedures can be found elsewhere (Wenzloff et al., 1992; Carden et al.,
2002).

Rectangular specimens were sheared with their lengths parallel to the sheet rolling direction. As shown in
Fig. 2, the draw-bend test procedure consists of three steps. The first step involves bending the flat sheet to
conform to the tool, with 90° of contact. A prescribed back force is next applied to the left end of the strip,
and the strip is drawn over an unrotating tool by imposing a constant speed of 40mm/s to the right end of
the strip, while the back force is kept constant. Fy, (the normalized back force) is expressed as the back force
divided by the yielding force of the specimen in uniaxial tension. Standard industrial lubricant (Parco
Prelube MP 404, 2001) was brushed on both the strip and tool surfaces to provide medium friction (Carden
et al., 2002). After the drawing distance reaches 127mm, the final step involves unloading of the specimen,
removal from the grips, and measurement. The specimen shapes were traced on paper and then recorded
digitally. Traces were first taken one minute after forming and unloading, then repeated at intervals up to
15months for time-dependent springback measurement (Wang et al., 2004). The current work only studies
the static springback, that is, as measured approximately one minute after unloading.

A typical unloaded specimen is depicted in Fig. 2, with four deformation regions delineated. Regions 1
and 4 remain straight throughout the test. Region 2 was in contact with the forming tool just before unload-
ing, and its radius of curvature changes from R to R’ after springback. The important specimen geometry is

Fp =
Initial
Fp =
Loaded Q

r

o

127 mm

A0 VX: 40 mm/s

Fig. 2. Schematic of the stages of the draw-bend test and unloaded specimen geometry.
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defined by Region 3, which has a radius of curvature »’ after unloading. It is a measure of the so-called
“sidewall curl” that is observed in many sheet-formed parts (Davies, 1984). Springback may be character-
ized by the springback angle A0, Fig. 2.

A transverse curvature in the sheet width direction was discovered in some draw-bend tested strips (Car-
den et al., 2002). If the transverse cross-section is assumed to be circular, the radius of this anticlastic cur-
vature, R,, can be calculated according to

Ah  W?

“ =2 T 3AL M
where A/ is the arc height of the cross-section (Carden et al., 2002). A# was measured at the center point of
Region 3 (Fig. 2) of an unloaded specimen, using a digital caliper with 0.01 mm resolution. The complete
cross-section profile was measured by a 0.03mm resolution dial gauge for two draw-bend tested samples.
The anticlastic deflection for other specimens was measured at the center only. The measured Ak varies
from 0.1 to 1.6mm (i.e., R, = 200-3600mm). The specimen-to-specimen (under same test conditions) scat-
ter of R, is 10-90mm.

3. Finite element modeling

Simple bending of initially flat and curved elastic plates was simulated by finite element (FE) modelings,
and results were compared with the closed-form solution (as will be discussed in the next section). 4-Node
shell elements with reduced integration (type S4R) were used (Abaqus, 2001), with 15 integration points
through the sheet thickness (1 = 1). The elastic modulus and Poisson’s ratio adopted in simulations were
65GPa and 1, respectively. Mirror symmetry was utilized and only one quarter of the plate was modeled,
with symmetric boundary conditions applied at the plate edges. Pure bending was attained by applying pre-
scribed rotations to edge nodes.

The static springback in the draw-bend test was simulated, for a range of back force (0.1 < F, < 1.2),
specimen width (W = 12-50mm) and tool radius (3.2-12.7mm). Both 2D and 3D analysis were carried
out, using plane-stress beam element (Abaqus type B21), and 4-node shell element with reduced integration
(S4R), respectively (Abaqus, 2001). The sheet strip was modeled by 300 elements of non-uniform size in the
longitudinal direction. Smaller elements were used in the contact areas (Regions 2 and 3, Fig. 2) to ensure
numerical accuracy, with one contact node per 4.5° of turn angle (Li et al., 2002). In 3D FE models, only
half of the physical strip was modeled because of the mirror symmetry, with 8 elements in the sheet-width
direction. Fifty-one integration points were used through the sheet thickness, for both B21 and S4R ele-
ments, to minimize numerical error (Li et al., 2002). In order to closely represent plastic anisotropy of
6022-T4 sheet, the Barlat’96 yield function (Barlat et al., 1997) and a modified anisotropic hardening model
were adopted. A friction coefficient of 0.15 was used for lubricated test conditions. These choices of mate-
rial and friction parameters have been shown to closely reproduce the observed springback behavior for
this alloy (Geng and Wagoner, 2002; Carden et al., 2002).

Simple bending theory suggests that the draw-bend process using standard specimens ( W/t = 55) is clo-
ser to plane-strain deformation (Marciniak and Duncan, 1992). However, 2D finite element simulations
demonstrated that plane-stress (with B21 beam element) results were consistently better than plane-strain
(with S4R shell element) (Li et al., 2002). In the FE models, the plane-strain assumption was enforced by
prescribing zero lateral displacement to all nodes in the width direction. For the sake of simplicity, von
Mises yield function and isotropic hardening law were used in these simulations. As shown in Fig. 3, simu-
lations using 2D beam elements are in better agreement with experimental data than that of plane-strain,
Fig. 3(a). It is also noted that 2D simulations introduce significant error for larger back forces, because
neither plane-stress nor plane-strain reproduces the anticlastic curvature. Full 3D simulations correctly
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Fig. 3. Simulated springback angle using various assumptions.

reproduce the fast decline of springback angle as Fy, approaches 0.7-0.8. This phenomenon is correlated to
the appearance of persistent anticlastic curvature, Fig. 3(b), which will be explored in detail.

4. Elastic theory for plate bending

Before interpreting the anticlastic curvature during and after draw-bending, the simpler case of pure
bending is considered. The classic bending theory of elastic plate is summarized here, while details can
be found elsewhere (Ashwell, 1950, 1952). The results are based on the work of Ashwell (1950, 1952), which
makes use of Marguerre’s large deformation theory of plate bending (Marguerre, 1938) and extends von
Kédrman’s analysis (von Kdrman, 1910). Unlike small deformation theory, the membrane stress at the
plate’s middle surface is considered.

The general theory is first introduced, with approximations suitable for closed-form solution. Then,
these results are applied to two cases of interest for the draw-bend application: (1) bending of an initially
flat sheet, and (2) unbending (straightening) of a curved sheet. These two operations are investigated be-
cause they correspond to the bending and unbending experienced by the cross-sections of the draw-bend
specimen as they are drawn sequentially over the tool radius.

4.1. Closed-form solution

The problem of bending an initially curved plate is shown schematically in Fig. 4. A rectangular plate
(dimension L, W and ¢), with initial middle surface shape described by zy(x,y) and radii of curvature
R,o and R, is subjected to a bending moment m, per unit width applied to the plate edges, i.e., at x = +£.

The problem may be solved in closed form with the simplifying assumptions that the initial and final
mid-plane shapes are described parabolically by

x? x? y w?
= — Z - - 2
zo(x,y) Ry +Zo(y) 2Ry + 2R, 12Ry @
x2 ~
z(x,y) = 2=+ Z(y) o

2R,
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Fig. 4. Schematics of plate bending problem in the Cartesian coordinate system.

where R, and R, are the respective radii of curvature after deformation (Ashwell, 1952), and Z(y) is the fi-

nal, arbitrary anticlastic shape that is sought. Under these conditions, the anticlastic profile z(y) for an ini-
tially singly-curved plate (ﬁ = O,ﬁ # 0) can be solved from the following fourth-order, homogeneous

ordinary differential equation:

dz , . 31 =)
@ +4yZ2=0 with "= 7Rit2 (4)
The solution of the above ODE is (Ashwell, 1952)
- Ry
z o Y ) .
- =———(K;coshyycosyy+ K, sinhyysin yy) (5)
t 3(1 —v?)
where

2 2

sinh () cos () ~ cosh () sn ()
B

sinhyW + sinyW
__sinh (&) cos (i) + cosh (&) sin (1)
T sinh yW + sin yW
For an initially doubly-curved plate (Rio #0, R%O # 0), an approximate solution of the anticlastic profile is
L R R ’
z . .
Z= M(Kl cosh yy cos yy + K, sinh yy sin yy) (6)
t 3(1—v2)

4.2. Results for pure bending of an initially flat plate (RL() = ﬁ =0)

Eq. (5) maybe used to visualize the anticlastic curvature for a range of plate widths and primary curva-
tures. Fig. 5 shows the variation of the normalized anticlastic deflection and the normalized transverse
stress along the plate width direction, for a rectangular plate (W = 50 and ¢ = 1) bent to various curvatures.

As shown in Fig. 5(a), the anticlastic displacement tends to localize toward the plate edges as f increases,
while the plate center remains relatively flat. Correspondingly, more transverse stress is developed in the
central area of the plate, but it decays to zero at the plate edges, Fig. 5(b). As f increases, the area with
biaxial stress state expands, and the transverse stress drops faster near the edges. In the limit of = oo,
the center of the plate approaches plane-strain, with g5, = vay;, as illustrated by the thin dotted line in
Fig. 5(b). From elastic plate theory, it is known that a lateral bending moment, m, = vm,, exists over
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Fig. 5. Elastic solution of bending initially flat plate: (a) normalized anticlastic deflection and (b) stress ratio.

the flat portion of the deformed plate to maintain a cylindrical surface. However, m, must equal zero at the
edges. As pointed out by Fung and Wittrick (1955), the near-edge region with localized anticlastic defor-

mation acts as a boundary layer through which the later bending moment is built up, from zero at the edge,
to vm, at the center.

The critical value, *, at which the anticlastic deflection curve starts to change its shape and first exhibits
an inflection point, can be calculated by solving the following equation:

d’z W W
[d—)ﬂ} o =0 = tan < 7 > + tanh <7> =0 (7)

where yW = /B+y/3(1 —12). The first root of the above transcendental equation is f* = 13.5 for v =1
The maximum antlclastlc deﬂectlon which occurs at plate edges, can be determined as follows. Knowmg
that sinh(yW) = cosh(yW) — e’ as yW — oo, and the constants K; and K> in Eq. (5) become

Ky, =e "2 [cos </;V> F sin (/?)} (8)

Near the plate edges, approximations are also made such that sinh(yy) ~ cosh(yy) — 1e”. Therefore, the
normalized anticlastic deflection from Eq. (5) becomes

- (_(% sin(3) — cos(1)] ©)

where)‘/—%—y
1

z
t

s the distance measured from the plate edge toward the plate center. For an initially flat

plate, i.e., =~ = Rl = 0, the maximum deflection occurs at the plate edges (y = 0), and depends only on Pois-
son’s rat1o
z \
z S — 10
(t>max 12(1 - Vz) ( )

For v = %, the maximum anticlastic deflection z,,, is about 10.2% of the sheet thickness.
In comparison with the closed-form solution, a series of elastic finite element simulations were conducted
for pure bending of an initially flat sheet (¢ = 1) with various widths and bending radii, as listed in Table 1.



1294 J.F. Wang et al. | International Journal of Solids and Structures 42 (2005) 1287-1307

Table 1
Parameters used in the finite element model for elastic bending
p Case W (mm) L (mm) R (mm) Mesh (W x L)
5 a 5 8 5 10 x 32
10 32 20 10 x 64
c 20 128 80 10 x 128
100 a 25 10 6.25 25%20
50 40 25 25 x40
c 100 160 100 25x 80

The finite element meshes are so chosen that the element aspect ratio is 1. Further refinement showed neg-
ligible difference in results, as will be shown later. In order to assess the invariance of the result for fixed f3,
this parameter is rewritten in terms of non-dimensional quantities as follows:

)y
TRt (R)1)

B (11)

The second form reveals the relationship of 8 to thickness-normalized specimen width (W/t) and bending
radius (R/?).

The simulation results for f = 5 are compared with analytic solutions in Fig. 6, using three combinations
of strip widths and bending radii. The simulated anticlastic profiles agree well with the closed-form solu-
tions for this intermediate case (that is, it is intermediate between the plane-stress and plane-strain limits).
As justified by one case (W = 20mm), 15 through-thickness integration points are sufficient for elastic sim-
ple bending simulation.

For larger f3, the analytic solution predicts that the anticlastic deflection is more concentrated toward the
sheet edges. This is confirmed by finite element results for f = 100, as shown in Fig. 7(a). The stress state in
the sheet center area is close to plane-strain, with stress ratio :—ﬁ approaching Poisson’s constant, see Fig.
7(b). Mesh refinement shows negligible difference in displacement and stress solution, as illustrated by
the selected case for W = 50mm, Fig. 7.

Conventional wisdom usually distinguishes plane-stress bending from plane-strain bending by the
ratio of width to thickness (Marciniak and Duncan, 1992). For example, plane-stress bending is assumed

0.16 0.4
O W=5, R=5 (N, =15)
O W=10, R=20 (N, =15) B
N 012| * W10, R=20 (N_=35) 0l O W=5, R=5 (N _=15)
S + W=10, R=20 (N_=51) o H W=10, R=20 (N =15)
é A W=20, R=80 (N_=15) o X W=10, R=20 (N =35)
3 .08 | —Analytic 2 ook + W=10, R=20 (N_=51)
2 g A W=20, R=80 (N =15)
% g Analytic
% 0.04 | 2 0.1}
pz4
| o o= . =1, V=1/§, p=5 t=1, v =1/3, B=5
0B %1 02 03 04 05 % 01 02 03 04 05
(a) Normalized width coordinate y/W (b) Normalized width coordinate y/W

Fig. 6. FEM validation of the elastic solution for # = 5: (a) normalized anticlastic deflection and (b) stress ratio.
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Fig. 7. FEM validation of the elastic solution for # = 100: (a) normalized anticlastic deflection and (b) stress ratio.

for W/t < 1 and plane-strain for W/t > 1. For these two limiting cases, the primary curvature is propor-
tional to the bending moment M, according to elementary bending theory:

| ¥, plane-stress
> = M(1 - . (12)
R, M(1—v) , plane-strain

EI

where 7 is the section moment of inertia. Based on the previous analysis, the transition from plane-stress to
plane-strain is not only a function of W/, but also of the normalized primary bending radius R./¢ (as re-
flected in the combined parameter f3). Experimental results showed such a transition with one silicon spec-
imen bent to various radii (Kaldor and Noyan, 2002a,b).

The effect of anticlastic curvature on stress state can be realized as follows. When the anticlastic surface
can freely develop (f < 1), it has a constant curvature of p, = — - by the elastic Poisson’s effect. When con-
sidering the width effect as f§ increases, the anticlastic deflection is suppressed in the central area of the plate.
As a result, the transverse curvature varies throughout the width, as can be evaluated from Ashwell’s
closed-form solution (Eq. (5)):

d’z . .
py:—iz ——V[choshyycosyy—Kl sinh yy sin yy] (13)
dy R,
Through Poisson’s ratio, the restrained anticlastic curvature will affect the principal one. Eq. (12) can be
generalized to incorporate the change of the principal bending curvature caused by the anticlastic deforma-
tion (for the same bending moment), in terms of a dimensionless parameter ¢:

1 M
=—=—(1-¢* 14
b= =g (1= ) (14)
Plane-stress and plane-strain are two special cases corresponding to ¢ =0 and ¢ =1, respectively.
Parameter ¢ has been called the anticlastic factor (Pomeroy, 1970). It depends only on f# and Poisson’s con-
stant v:

b1 2 coshk\/ﬁ—coskﬂ (15)
kB | sinhky/B + sink\/B

where k = /3(1 —1?).
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Fig. 8. The variation of the anticlastic factor ¢ with Searle’s parameter /.

Fig. 8 shows that ¢ izs close to zero when f is small, but that it approaches 1 asymptotically for large /.
Eq. (13) reduces to 5 =—z,asy7—0, i.e., the transverse curvature is constant along the width direc-
tion, and it has a sign opposite to the primary one. The ratio between these two curvatures is equal to Pois-

son’s ratio, v.
4.3. Application to straightening of an initially curved plate

The foregoing model applies to the initial bending stage of the draw-bend test as an initially flat sheet is
drawn over the tool radius. The second stage to be considered is the unbending, or straightening, of the
primary curvature as the strip leaves contact with the tooling. Considering the contact constraints with
the adjacent tooling, the initial condition of the plate for this stage can be idealized as R’ = R and
RB = oo (i.e., no anticlastic curvature while in contact with the tool), as shown schematically in Fig. 9. This
starting condition is consistent with FE analysis of the draw-bend operation, which shows essentially no
transverse curvature near the tool contact.

The curved plate is straightened by applying a uniform moment m, (per unit width) along the transverse
edge, until the primary curvature disappears, Fig. 9. In order to solve the homogeneous ODE (Eq. (4)) in
closed-form, the initial plate profile is approximated by a parabolic function, as given by Eqgs. (2) and (3).
To calculate the shape of a cross-section A-A4, z(y), after unbending, the following approximations are
utilized:

sinhx ~sinx ~x and coshx =~ cosx~1 asx — 0 (16)

Then, constants K; and K, in Eq. (6) become

W W
=F 5 1
2=———>=0,> (17)
YW+ W 2
and the anticlastic deflection reduces to
2 v Wy

z vy z
- = — = — = — l
t 2R ot and (l) max 8 Ryt 8 ﬂxo ( 8)
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Fig. 9. Unbending (straightening) an initially curved plate.

According to this analysis, straightening an initially curved plate (ﬁ #£0, Rim = 0) can produce large anti-
clastic deflection. The maximum anticlastic displacement is proportional to Searle’s parameter, B, = %;,
and Poisson’s ratio, v. For a typical draw-bend test (W = 50mm, ¢ = 0.9mm and R, = 3.2mm), the final
anticlastic displacement is up to 30 times the sheet thickness.

To validate the closed-form solution, the straightening problem was FE simulated, using both elastic and
elasto-plastic material models. For the latter case, the von Mises yield function and isotropic hardening
were used, with a Voce type of hardening law (Wagoner and Chenot, 1997): ¢ = 381 — 215¢~ %% (MPa).
The FE model is schematically shown in Fig. 9, where a cylindrical plate is flattened by a uniform moment
m, at its transverse edge. Ten 3D shell elements (S4R) were used in the sheet width direction, and a min-
imum of 40 shell elements in the longitudinal direction so that the turning angle is limited to 2.3° per node.
Fifty-one integration points were used through the sheet thickness. These parameters have been shown to
be sufficient for accuracy (Li et al., 2002).

The cross-sections at x = 0 after unbending are compared with the theoretical solution given by Eq. (18),
Fig. 10. As will be discussed, the error caused by parabolic approximation for a circular cross-section is
minimal as x — 0. As shown in Fig. 10(a), elastic simulation results agree with the closed-form solution.
The maximum anticlastic deflection, (f)max, is invariant for fixed f, regardless of the specimen widths
(W =5-100mm) and initial radii (R, = 5-2000mm). Both simulation and the closed-form solution dem-
onstrate that the maximum anticlastic deflection at plate edges can be several times the plate thickness,
while bending an initially flat plate can only produce zyax = 0.102¢ for v =1. This difference illustrates
why significant anticlastic displacement occurs in the forming step of the draw-bend test, where a sheet
is straightened as it slides over a tool surface.

For elasto-plastic material, simulation results deviate from the elastic solution when f > 20, Fig. 10(b).
This is because shear stress is required to maintain compatibility between the elastic (v = %) and plas-
tic (v =0.5) regions of a plastically bent plate, while that shear effect is neglected in deriving the closed-
form solution (Ashwell, 1950). At the same [ value, larger deviations exist for narrower plates,
because the primary bending radius is smaller and more plastic deformation occurs throughout the plate
thickness.
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Fig. 10. Simulated maximum anticlastic deflection after unbending for (a) elastic material, and (b) elasto-plastic material.

4.4. Error analysis

As previously mentioned, one major assumption was made in order to solve the fourth order ODE of the
elastic bending problem. That is, the initial cross-sections in longitudinal and width directions, and the dis-
torted cross-section in the longitudinal direction, were all approximated by parabola. Or equivalently, cur-
vature is calculated by p =Zz" instead of p = (1+§’Z 7. As shown schematically in Fig. 11, the parabolic
approximation causes significant error when the chord length, b, is a significant fraction of the radius of
a circle, R. The depth of the parabola COD, Ah, and the depth of the arc AOB, Ak, both evaluated at
x = £5, are calculated by

b2
T 2R

Ah (19)

. - —.\'\.
7 N
/ x2+(z-RPP=R?
. \
/ .
I Z“/'\-
. |
| I
\‘ /
\A b B/
AS 2
Ah i\, s Db .
pandi~x | = R
x=-5 o X

Fig. 11. Error analysis for using parabolic function.
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Table 2
Error introduced by using the parabolic function
11—; 0.2 0.28 0.45 0.63 1.0 2.0
Err (%) 1 2 5 10 25 100
b2
Ah=R|1—4/1 - (= 20
(3%) (20)
Applying Taylor’s series expansion to the second equation obtains
—p R(b\' b
A=—+—-|=— O — 21
sr '3 <2R) * <2R> 1)

where ((-) indicates the higher order terms. The percentage error introduced by the parabolic function is
defined as Err = 2482 % 100%. For various ratios of 4, the computed errors are listed in Table 2.

As can be seen from Table 2, the error quickly grows as 2 increases. For the draw-bend test, the unbend-
ing takes place from an initially circular strip that was wrapped around a tool of radius R, so that 2 = 2.
Therefore, large errors in the form of the specimen are expected if the closed-form solution is applied to a

cross-section that is located near the plate edges (x = %, Fig. 9).

5. Experimental results

Two groups of rectangular 6022-T4 aluminum strips, with 0.9 mm thickness, were tested in the current
work. Specimens from the first group were 50 mm wide, and were tested under various sheet tensions for
two tool radii of 12.7 and 3.2mm. The purpose was to delineate the region of rapid springback angle change
(and concomitant growth of anticlastic curvature). The second group had a strip width ranging from 12 to
50mm, and was tested using a 12.7mm tool at two values of normalized sheet tension: Fi, = 0.5 and 0.9.

5.1. Effect of back force

As shown in Fig. 12, the springback angle decreases with back force, while the anticlastic curvature '
varies oppositely. As back force approaches 0.7-0.8, there is a dramatic drop in springback angle, accom-
panied by a rapid increase in anticlastic curvature. The sudden decrease of A0 has been attributed to the
persistent anticlastic curvature, which substantially increases the section moment of inertia when
F, = 0.7 (Carden et al., 2002).

Simulated springback angles agree with experiments for both bending radii (R/z = 3.5 and R = 14), Fig.
12(a). A small bending radius causes more springback, contrary to simple bending results. However, it is in
accord with other stretch-bending experiments (Takahashi et al., 1996).

Both experiment and FEM simulation have shown the decrease of anticlastic curvature when Fy, > 0.9—
1.0, as can be seen in Fig. 12(b). However, simulation results for a small bending radius (R/¢ = 3.5) show an
appreciable deviation from measurement. This is presumably because of the use of shell elements which are
not accurate for small radius bending (Li et al., 2002). When R/t < 5, the general shell assumptions, namely

! Measured anticlastic curvature is derived from measured displacement at the center of the arc relative to the edge using Eq. (1).
More precision is difficult and unnecessary for small deflections observed.
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Fig. 13. Variation of maximum anticlastic deflection with front force in the draw-bend test: (a) loaded and (b) unloaded.

zero through-thickness stress and plane section remaining planar after deformation, are no longer valid
(Hill, 1950).

The maximum anticlastic deflection (i.e., Ah) from FE simulation is plotted against the normalized front
force (Fy), Fig. 13. Before unloading, the maximum anticlastic deflection decreases with increasing front
force, and it can be as much as 3 times the sheet thickness when F¢ < 0.5. After springback, the remaining
depth gradually increases with increasing front force, with an abrupt change as the front force approaches
unity, Fig. 13(b). This indicates that the persistence of anticlastic curvature is determined by the sheet
tension. 2

Persistent anticlastic curvature has a significant role in reducing springback. As shown in Fig. 14, the
bending moment continuously decreases with the back force, as would the springback angle assuming a

2 A normalized front force of 1 corresponds to a normalized back force of between 0.7 and 0.8 for the draw-bend test of interest.
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constant moment of inertia of the sheet cross-section. However, the principal bending rigidity of the strip
dramatically increases because of the persistent anticlastic curvature during springback when F; > 1.0. The
moment of inertia for a circular cross-section, 7, can be calculated using standard formulas (Young, 1989).
As illustrated in Fig. 14, the normalized moment of inertia, I/1,, is increased by a factor of about 3 when the
front force exceeds yielding. Here, I, = V{’—’; is the reference moment of inertia for the initial, flat rectangular
cross-section. Because of the sudden increase of bending rigidity, springback angle is greatly reduced,
Fig. 12(a).

5.2. Effect of specimen width
The experimental results for specimens with various width from 12 to 50 mm are plotted in Fig. 15. For

both Fy, = 0.5 and F, = 0.9, the anticlastic curvature decreases with sample width. However, the springback
angle, A0, first decreases with sample width for the case of Fy, = 0.5, then it increases after a local minimum
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Fig. 15. Springback angle and anticlastic curvature from the draw-bend test for (a) F,, = 0.5 and (b) F, =0.9.
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curvature.

that happens around W =25mm, Fig. 15(a). For F;, = 0.9, Af monotonically declines with the specimen
width, Fig. 15(b).

Finite element simulations were carried out for samples tested with F, = 0.5. As shown in Fig. 16, sim-
ulation agrees well with measured springback angle and anticlastic curvature. A 2D simulation result using
beam elements is also presented in Fig. 16(a) for comparison. Since a plane-stress state is assumed in the
sheet width direction when the beam element (B21) is used, a higher springback angle is attained. For nar-
rower specimens, the value of Af from 3D shell element simulations approaches the beam result.

5.3. Application of the elastic bending theory

To make use of the closed-form solution for interpreting these results, the draw-bend test procedure is
divided into three sequential steps: bending, unbending and springback. The first step is trivial, in which the
sheet is wrapped around the tool under superimposed tension. It is treated as a plane-strain problem, be-
cause the strip conforms to the tool surface, and hence transverse displacement can be neglected.

The second and third steps are more complicated 3D problems, because anticlastic deformation is pre-
sent in both steps. In the unbending step, the strip loses its primary curvature (4, when it is in contact with
the tool) as it slides over the tool surface. Eventually, it becomes straight in the longitudinal direction, i.c.,
R)(f) oco. Meanwhile, a transverse curvature, —5 e , is developed in the sheet width direction. In the last step,

the sample attains a primary curvature in the szde-wall curl region after springback. The radius of this cur-
vature, 1/, depends on sheet tension, tool radius and friction condition, as well as material properties such as
yield surface shape and strain hardening law (Carden et al., 2002; Li et al., 2002). During springback, the
previously developed anticlastic curvature will change from R‘—a. Table 3 summarizes the primary and
anticlastic curvatures involved in the three steps.

Table 3

The radii of primary and anticlastic curvature in the draw-bend test

Step Rx() RyO Rx Ry
1 Bending 00 [ R )

2 Unbending R 00 00 R}(,z)
3 Springback 00 R?) r R,

y
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The elastic theory of plate bending can be applied to the last two steps, as schematically shown in Fig.
17. Apparently, the unbending process (Step 2) involves plasticity, and thus elastic plate theory will not give
satisfactory results. As discussed in Section 4.3, the elastic theory overpredicts the maximum anticlastic
deflection by a factor of 10 for a typical draw-bend test (R/t = 3.5).

Nonetheless, it helps to understand why the maximum anticlastic deflection before unloading can be as
much as 3 times the sheet thickness in the draw-bend test. For the last step, the application of elastic theory
is reasonable, since springback is usually dominated by elastic deformation. The outputs of the unbending
step from FE simulation, i.e., the transverse and longitudinal cross-section shapes, are used as input for the
analysis in the springback step. Then, the predictions by the closed-form solution are compared with the FE
results; and, for two cases, with experimental data as well. The goal is to explain why anticlastic curvature
persists after springback only for large sheet tensions.

To apply the elastic theory for the springback analysis, three radii of curvature, Rff), Rﬁz) and Rf) from
FE simulation, are used as input to the closed-form solution, in order to calculate the anticlastic curvature
after springback, Rf). The predicted maximum anticlastic deflection is then compared with FE results. As
shown in Fig. 18, the elastic theory prediction agrees qualitatively with the finite element simulations for
both tool radii, but it under-estimates the magnitude of anticlastic deflection. Both FE simulations and elas-
tic predictions show that the unloaded depth of the anticlastic profile initially increases with sheet tension,
but decreases after front force exceeds the yielding force of the strip, which corresponds to the occurrence of
the persistent anticlastic curvature after springback. It is also noted that elastic prediction deviates more
from FE results as normalized front force is larger than unity. On the other hand, the elastic solution is
closer to the finite element simulation for a larger tool radius. One possible explanation is that springback
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also involves plastic deformation because of the reduction of flow stress after a reversed strain path (Geng
and Wagoner, 2002). Previous work showed that plasticity during springback can significantly change the
residual stress distribution, and a purely elastic unloading scheme causes a difference of 10° of springback
angle (Li et al., 2002).

The calculated cross-section profiles are compared in Fig. 18 with FE simulations and experimental data,
for two specimens tested at Fy, = 0.4 and 0.8, with R/t = 14.0, Fig. 19. For small back force, the anticlastic
deflection is localized toward the specimen edges, while the cross-section is nearly circular for £y, = 0.8. The
overall agreement between elastic prediction, finite element simulation and experimental measurement is
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Fig. 19. Comparison of measured, simulated and analytically predicted anticlastic profiles for draw-bend tested samples: (a) F, = 0.4
and (b) F, =0.8.
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satisfactory. However, the elastic solution tends to under-estimate the magnitude of anticlastic deflection,
as previously demonstrated by Fig. 18.

6. Discussion

Based on the previous analysis, the shape of the anticlastic surface of a draw-bend tested sample can be
characterized by a dimensionless parameter, 5, which combines the influence of tool radius, sheet tension
(via the curl radius ') and sample geometry (W/r). This can be emphasized by the anticlastic profiles
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Fig. 21. Variation of Searle’s parameter f§ with back force.
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computed by FE simulation, Fig. 20. Specimens from the first test group have the same width, but sheet
tension and bending radius are different, Fig. 20(a). Fig. 20(b) shows the cross-section profiles of samples
with various widths ranging from 12 to 50mm tested with the R/t = 14 tool. Both cases demonstrate that f8
uniquely determines the shape of the anticlastic surface. When f < 10-15, all cross-sections are nearly cir-
cular. As f§ increases, anticlastic deflection tends to localize toward the sheet edges, while the sheet central
area is essentially flat.

As a final note, it appears that the variation of f§ with respect to the back force is similar to that of A0,
Fig. 21. In addition to the steady decrease with Fy, f§ rapidly decreases around Fy, = 0.7-0.8. This closely
matches the sudden decrease of Af in Fig. 12(a), as well as the sudden increase of the anticlastic curvature
in Fig. 12(b). Therefore, it is clear that the persistent anticlastic curvature is determined by the interplay be-
tween specimen geometry, back force and tool radius, as reflected by Searle’s parameter /5.

7. Conclusions

Elastic bending theory, finite element simulation, and draw-bend experiments have been utilized
to investigate the role of forming variables on anticlastic curvature. The following conclusions were
reached:

1. Springback steadily decreases as sheet tension increases, with sudden decline of springback angle as the
front pulling force approaches yielding. Persistent anticlastic curvature is identified as the cause of this
rapid change. Larger tool radius leads to less springback, but has a less significant effect than sheet
tension.

2. In the draw-bend test, anticlastic curvature is developed in the unbending process during forming, and it
persists after springback when the applied sheet tension exceeds a critical value near yield. The persistent
anticlastic curvature significantly increases the section moment of inertia, and thus dramatically reduces
springback.

3. For F, = 0.5 and R/t = 14, the springback angle first decreases, then increases with the strip width, but
the anticlastic curvature monotonically decreases with the specimen width. However, both springback
angle and anticlastic curvature decrease with the specimen width for £, = 0.9.

4. The occurrence and persistence of anticlastic curvature in the draw-bend test can be understood through
the use of the elastic bending theory. The cross-section shape after unloading is determined by Searle’s
parameter, 8, which depends on the specimen geometry (W/t) and sheet tension (via the curl radius R,).
The rapid decrease in springback angle at Fy, = 0.7-0.8 corresponds to a critical § value of 10-15, above
which the anticlastic displacement tends to concentrate toward the sheet edges.

5. The stress state in the lateral direction (plane-stress or plane-strain) cannot be simply identified by the
sheet width-to-thickness ratio, even for simple bending problems. The radius of primary bending curva-
ture can affect deformation mode too, via Searle’s parameter. For the draw-bend test, the springback
process is closer to plane-stress rather than plane-strain, because of the persistent anticlastic curvature.
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